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We study the flow of a viscoelastic fluid flowing in an occluded tube due to either central or peripheral
obstructions. We show that, by driving the fluid with a dynamic pressure gradient at the frequency that
maximizes the dynamic permeability of the obstructed system, the magnitude of the flow can partially be
recovered without the removal of the obstruction. We compare the results obtained for the two types of
occlusions studied and find that flow recovering is larger in the case of central occlusions.
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I. INTRODUCTION

Occlusions of tubes have always represented a problem.
From engines and filters to arteries and bronchia we can find
a countless amount of systems in which the lack of move-
ment of a fluid due to the presence of an obstacle results in
the partial or total failure of a process. In particular, the
occlusion of biotubes in the human body represents an im-
portant issue in many diseases. For instance, during the oc-
clusion of arteries, blood decreases its velocity and, in criti-
cal cases, is effectively unable to flow through the remaining
space. Such a lack of movement prevents irrigation and, in
many cases, results in the eventual death of tissues.

Recent experimental and theoretical work on viscoelastic
fluids �1–6� have found that the dynamic permeability can
increase orders of magnitude at certain frequencies. The dy-
namic permeability is an intrinsic property of the system
viscoelastic fluid-confining media and determines the system
response to different signals of the pressure gradient. It can
be considered as a measure of the resistance to flow, the
larger the dynamic permeability, the less the resistance to
flow. The increase of the dynamic permeability at certain
frequencies suggests that the magnitude of the flow might be
increased by driving the fluid with a pressure gradient that
contains the frequency that maximizes the dynamic perme-
ability. We have indeed verified that by imposing a periodic
pressure gradient at the frequency that maximizes the dy-
namic permeability, the magnitude of the flow of a viscoelas-
tic fluid flowing in a tube can largely be increased. This
implies that the dynamics for the pressure gradient with a
properly chosen frequency provides a way of controlling the
magnitude of the flow. We present analytical results for the
simple case of a pressure gradient consisting of a single sinu-
soidal mode in order to show that the maximum value of the
flow magnitude depends on two things: the real part of the
dynamic permeability and the cross-sectional area available
for flow. When an obstruction occurs, it is clear that if one
recovers the value of the real part of the dynamic permeabil-
ity �by driving the fluid at the proper frequency�, one elimi-
nates one of the two factors that provoke the dramatic de-

crease of flow. Having established that, we model two types
of occlusions and show that, by driving the fluid with a pe-
riodic pressure gradient at the frequency that maximizes the
permeability of the obstructed system, the flow can partially
be recovered without the removal of the obstruction. We
compare the results obtained for the two types of occlusions
studied, namely central occlusions and peripheral occlusions
and find that flow recovering is larger in the case of central
occlusions. We also compare the results for two different
dynamics of the pressure gradient and find that even though
the dynamics does make a difference in the magnitude of the
flow, it does not make a big difference when it comes to the
percentage of flow that can be recovered.

II. MODEL

We model the viscoelastic fluid, by means of the linear-
ized Maxwell model, which is the simplest hydrodynamic
model to describe viscoelastic behavior, i.e.,

tr�
�2v

�t2 + �
�v

�t
= − tr

��p

�t
− �p + ��2v . �1�

Here t is time, v is velocity, p is pressure, and tr, �, and � are
the Maxwell relaxation time, density, and viscosity of the
viscoelastic fluid. Equation �1� is nothing but the linearized
momentum balance equation of hydrodynamics together
with the constitutive relation of the Maxwell model. This one
is built in such a way that in the limit tr→0 reduces to the
constitutive equation of a Newtonian fluid, and in the limit
tr→� reduces to the constitutive equation of an elastic solid.
The Maxwell relaxation time is defined as tr�� /G where G
is the elastic modulus of the fluid. Equation �1� should be
solved for a particular geometry which in turn depends on
the type of occlusion considered. We consider occlusions that
result from the partial obstruction of flow in two different
ways. The first type of obstruction is one in which the walls
of a tube have been internally engrossed and the fluid circu-
lates through a tube that has effectively a smaller radius. We
call this peripheral occlusion and we model the space of
flow as the one inside a cylinder with a radius smaller than
the one of the unobstructed tube. The second type of obstruc-
tion considered is one in which the fluid must flow between*Corresponding author. eugenia.corvera@gmail.com
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the walls of a tube and an obstacle inside it. We call this
central occlusion and we model the space of flow as the one
between two concentric cylinders. We solve Eq. �1� for these
two geometries that are illustrated in Fig. 1.

In both cases, we solve Eq. �1� in the frequency domain
subject to no-slip boundary conditions. We then average the
velocity over the cross-sectional area available for flow and
obtain a generalized Darcy’s law, i.e.,

�v̂z� = −
K̂���

�
� p̂ , �2�

where K̂ is the dynamic permeability in the frequency do-
main. Here v̂z and �p̂ are the velocity and the pressure gra-
dient in the frequency domain, that is, they are functions of
space and frequency.

For the cylindrical geometry, that is the geometry used to
simulate both, unobstructed tubes and peripheral occlusions,
the dynamic permeability is given by �1,2�

K̂��� = −
�

i��
�1 −

�J0�Ar��
J0�AR� 	 , �3�

where r is the radial coordinate, R is the radius of the cylin-
der, � is the frequency, i=
−1, J0 is the Bessel function of
order zero, A= �

� �tr�
2+ i�� and the average of the Bessel

function refers to the average over the cross section and is
given by

�J0�Ar�� =
2J1�AR�

AR
. �4�

For the geometry of concentric cylinders, that is, the one
used to simulate central occlusions, we obtain

K̂��� = −
�

i��
�1 −

N0�ARint� − N0�ARext�
F

�J0�Ar��

+
J0�ARint� − J0�ARext�

F
�N0�Ar��	 , �5�

where Rext and Rint are the radii of the outer and inner cylin-
ders, respectively, N0 is the Neumann function of order zero,

F=J0�ARext�N0�ARint�−J0�ARint�N0�ARext� and the averages
of the Bessel and Neumann functions refer to averages over
the cross section available for flow and are given by

�J0�Ar�� =
2�RextJ1�ARext� − RintJ1�ARint��

A�Rext
2 − Rint

2 �
�6�

and

�N0�Ar�� =
2�RextN1�ARext� − RintN1�ARint��

A�Rext
2 − Rint

2 �
. �7�

The flow as a function of time, Q�t�, is given by

Q�t� � �v�t��A , �8�

where A is the cross-sectional area available for flow and
�v�t�� is the average over the unobstructed cross-sectional
area of the velocity in the time domain. In order to compute
it, we need to impose a time-dependent pressure gradient
�p�t�, Fourier transform it to obtain a frequency-dependent
pressure gradient �p̂���, we then should use Darcy’s law in
the frequency domain in order to obtain the velocity v̂��� in
the frequency domain, finally with the aid of an inverse Fou-
rier transform, we should get the velocity v�t� in the time
domain and compute the flow.

III. DYNAMIC PERMEABILITIES

We have studied a system with the following parameters:
viscosity �=5.5�10−3 kg/ �m s�, density �=1050 kg/m3,
relaxation time tr=0.5 s, and unobstructed radius R=1 mm.
We have considered obstructions of 75% of the cross-
sectional area.

In Fig. 2, we have plotted the dynamic permeability of a
nonobstructed tube and of a tube with a peripheral occlusion.
Several things can be observed from the figure. First, the real
part of the dynamic permeability has peaks at certain fre-
quencies and its value at the first peak is much larger than its
value at zero, or very small, frequency. We call the frequency
at which the first maximum occurs, the resonance frequency
of the system. Second, at low frequencies, the real part of the
dynamic permeability in a tube with a peripheral obstruction
is much smaller that the real part of the dynamic permeabil-
ity in an unobstructed tube. Third, the first peak of each of
the two curves have the same value of the real part of the
dynamic permeability. That is, the real part of the dynamic
permeability at the resonance frequency in a peripheral ob-
struction is as large as the real part of the dynamic perme-
ability at the resonance frequency with no obstruction. Fi-
nally, we can see that for the occluded system the resonance
frequency is larger than for the system with no occlusion.
For the parameters chosen, the resonance frequency for the
unobstructed tube is equal to �1=7.66 rad/s and the reso-
nance frequency for the peripheral occlusion is equal to �2
=15.5 rad/s. It is worth noticing that the imaginary part of
the dynamic permeability is zero at the resonance frequency
and that it goes to zero as frequency goes to zero.

In Fig. 3, we have plotted the real part of the dynamic
permeability of a nonobstructed tube and of a tube with a

FIG. 1. The top figure shows the geometry considered for pe-
ripheral occlusions while the bottom figure shows the geometry
considered for central occlusions.
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central occlusion. Several things can be observed from the
figure. First, at low frequencies, the real part of the dynamic
permeability of the fluid with a central occlusion is much
smaller that the real part of the dynamic permeability in an
unobstructed tube. Second, the real part of the dynamic per-
meability at the resonance frequency in a central occlusion is
as large as the real part of the dynamic permeability at the
resonance frequency with no obstruction. That is, the first
peak of the two curves shown in the figure have the same
value of the real part of the dynamic permeability. Third, we
can see that for the occluded system the resonance frequency
is larger than for the system with no occlusion. Finally, we
observe the presence of secondary peaks for the dynamic
permeability in a central occlusion �7�. These are related to
the presence of the inner cylinder but have no relevance for
what will be discussed here. For the parameters chosen, the
resonance frequency for the central occlusion is equal to
�2=75.82 rad/s. Just as in the case of the peripheral occlu-
sion, the imaginary part of the dynamic permeability for the
central occlusion is zero at the resonance frequency, and goes
to zero as frequency goes to zero.

IV. FLOW FOR A SINGLE MODE PRESSURE GRADIENT

In order to have a physical insight of the origin of the
increase in the magnitude of the flow, we first compute it for
a pressure signal consisting of a single sinusoidal mode of
the form

�p�t� = �p0 cos �0t . �9�

This pressure gradient oscillates in time around zero and
gives rise to zero net flow. By using the definition of a �
function �8� given by

��� − �0� =
1

2�
�

−�

�

ei��−�0�tdt , �10�

we write the pressure gradient on the frequency domain as

�p̂��� =
�

2
� p0���� − �0� + ��� + �0�� . �11�

When we substitute this in the generalized Darcy’s law �Eq.
�2��, we obtain the velocity in frequency domain as
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FIG. 2. �Color online� Dynamic permeability of a fluid flowing
in a tube with peripheral occlusion and with no occlusion. In the
peripheral occlusion, the obstruction represents 75% of the cross-
sectional area. The resonance frequency of the occluded system is
larger than the resonance frequency of the nonoccluded system. The
dynamic permeability is given in m2 and the angular frequency in
rad/s. The parameters of the plot are described in the text.
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FIG. 3. �Color online� Dynamic permeability of a fluid flowing
in a tube with central occlusion and with no occlusion. In the cen-
tral occlusion, the obstruction represents 75% of the cross-sectional
area. The resonance frequency of the occluded system is larger than
the resonance frequency of the nonoccluded system. The dynamic
permeability is given in m2 and the angular frequency in rad/s. The
parameters of the plot are described in the text.
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v̂��� = −
�

2

K̂���
�

� p0���� − �0� + ��� + �0�� , �12�

finally, by an inverse Fourier transformation, we obtain the
velocity in time domain as

v�t� = −
�p0

2�
�K̂��0�e−i�0t + K̂�− �0�ei�0t� . �13�

Since for a real time-dependent pressure gradient, the time-
dependent velocity should be real as well, the dynamic per-

meability should be such that K̂�−��= K̂����, where the star
indicates the complex conjugate of the function. Using this,
we can write the velocity in time domain as

v�t� = −
�p0

�
�Re K̂��0�cos��0t� + Im K̂��0�sin��0t�� .

�14�

This is the velocity in time domain for a dynamic pressure
signal consisting only of one mode. Now if this mode with
frequency �0 has the resonance frequency of the system,

Re K̂��0� takes the maximum possible value of the perme-

ability and Im K̂��0�=0. In this case the flow magnitude is
given by

�Q�t�� =
�p0

�
Re K̂��0�A�cos��0t�� , �15�

and its maximum value is given by

�Q�t��max =
�p0

�
Re K̂��0�A . �16�

For this simple example, it becomes obvious that the
maximum value of the flow magnitude depends on two
things: the real part of the dynamic permeability and the
cross-sectional area available for flow. So, when an obstruc-
tion occurs in a system flowing at the resonance frequency of
the unobstructed system �1, the flow decrease is due not only
to the reduction of the cross-sectional area available for flow,
but also due to the dramatic decrease on the permeability at
that frequency �see Fig. 2 or Fig. 3 and compare the maxi-
mum value of the real part of the permeability of the unob-
structed system to the value of the dynamic permeability of
the obstructed system at the same frequency�. Now, what we
can see from the dynamic permeability of the obstructed sys-
tem is that there is a new frequency that makes it maximum.
So, according to Eq. �16� if we impose a one-mode pressure
gradient at this new resonance frequency, we are restoring
one of the two factors that decrease the flow magnitude, i.e.,
even if we cannot change the value of the cross-sectional
area available for flow A, we can restore the value for the
dynamic permeability by imposing a dynamic pressure gra-
dient with the new resonance frequency �recall that the real
part of the dynamic permeability for both the unobstructed
and the obstructed systems have the same value for its re-
spective resonance frequencies�.

If instead of the cosine pressure gradient we impose a
one-mode sine pressure gradient of the form

�p�t� = �p0 sin �0t , �17�

we obtain a velocity in time domain given by

v�t� = −
�p0

�
�Re K̂��0�sin��0t� − Im K̂��0�cos��0t�� ,

�18�

and exactly the same expression for the maximum value of
the flow magnitude �Eq. �16��.

V. FLOW FOR A PERIODIC PRESSURE GRADIENT

For an arbitrary dynamic pressure gradient the Fourier
transform necessary to obtain the pressure in the frequency
domain and the inverse Fourier transform necessary to obtain
the velocity in the time domain would need to be done with
numerical methods. However, we have found that any peri-
odic pressure gradient leads to an analytical expression for
�v�t��. This is because a periodic pressure gradient can al-
ways be written as a Fourier series, i.e.,

�p�t� =
a0

2
+ 


n=1

�

an cos n�t + 

n=1

�

bn sin n�t . �19�

Clearly, with the use of Eqs. �14� and �18� we can write

v�t� = −
1

�
�a0

2
Re K̂�0� + 


n=1

�

an Re K̂�n��cos�n�t�

+ 

n=1

�

an Im K̂�n��sin�n�t� + 

n=1

�

bn Re K̂�n��sin�n�t�

− 

n=1

�

bn Im K̂�n��cos�n�t�	 , �20�

where each of the coefficients a0, an, and bn is given by the
nonorthogonal part of the pressure gradient to the corre-
sponding Fourier mode. This result allows one to determine
in an analytical form the velocity in time domain for any
periodic pressure signal. Obviously this expression involves
an infinite sum that in turn should be evaluated numerically.

VI. FLOW FOR A PARTICULAR DYNAMIC
PRESSURE SIGNAL

In order to see how sensitive the results are to particular
signals of the pressure gradient, we have studied two differ-
ent dynamics. Namely, a train of Gaussian pulses and a rec-
tified sinusoidal signal. Since the results that we have ob-
tained are very similar for both signals, we present the results
for the rectified sinusoidal signal and comment on the ones
for a train of Gaussian pulses. So our pressure gradient is
given by

�p�t� =
� � p0

2
�sin��0t�� . �21�
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The factor �
2 is introduced in order to impose a pressure

gradient with time average equal to �p0. Note that since the
sine is rectified, the frequency of this pressure gradient is
equal to 2�0; so, if one wishes to impose a particular fre-
quency �p, the parameter �0 should be equal to �0=�p /2.
The velocity of the fluid in time domain in response to such
a pressure gradient is given by

�v�t�� = −
2 � p0

�
�1

2
Re K̂�0� − 


n=2,4,. . .

�
Re K̂�n�0�cos�n�0t�

n2 − 1

− 

n=2,4,. . .

�
Im K̂�n�0�sin�n�0t�

n2 − 1
	 . �22�

In what follows we compute the magnitude of the flow as
a function of time in nonobstructed tubes and in tubes with
both peripheral and central occlusions. In all cases the net

flow oscillates around its average value Q=−
�p0

� Re K̂�0�A.
We have imposed a pressure gradient with a time average

equal to �p0=−500 Pa/m. We have approximated the sums
in Eq. �22� by the first 1000 terms. This is a good approxi-
mation since for large values of n the terms decay like 1

n2 .

A. Peripheral occlusions

We compare the flow in a nonoccluded system at the reso-
nance frequency of the nonoccluded system, �1, with the
flow in a peripherally occluded system at two different fre-
quencies, namely, the resonance frequency of the nonoc-
cluded system, �1, and the resonance frequency of the
peripherally occluded system, �2.

The flow comparison for a peripheral obstruction is
shown in Fig. 4. We can observe several points from Fig. 4.
�1� The maximum value of the flow in nonoccluded tubes
driven by a time-dependent pressure gradient given by Eq.
�21� with �0=�1 /2 is 0.3873 cm3/s. �2� The maximum
value of the flow in a peripherally occluded tube driven by

exactly the same pressure gradient with �0=�1 /2 is
0.0186 cm3/s. This means that the maximum value of the
flow during a peripheral occlusion decreases by 95% for an
occlusion of 75% of the cross-sectional area. �3� When a
pressure gradient of the form given by Eq. �21� with the new
resonance frequency 2�0=�2 is imposed, the maximum
value of the flow increases to 0.0889 cm3/s. This implies a
recovery of 18% of the flow.

For a train of Gaussian pulses the maximum value of the
flow in nonoccluded tubes driven by a time-dependent pres-
sure gradient with �1 is 0.1273 cm3/s; the maximum value
of the flow in a peripherally occluded tube driven by exactly
the same pressure gradient is 0.0039 cm3/s. This means that
the maximum value of the flow during a peripheral occlusion
decreases by 97% for an occlusion of 75% of the cross-
sectional area; finally, when a pressure gradient with the new
resonance frequency �2 is imposed, the maximum value of
the flow increases to 0.0243 cm3/s. This implies a recovery
of 16% of the flow.

We can observe two things: that for a rectified sine signal
the maximum value of the flow is larger in all cases, and that
when it comes to the percent of flow that can be recovered,
the dynamics does not seem to make a big difference.

B. Central occlusions

Similar results are obtained for central occlusions: we
compare the flow in a nonoccluded system at the resonance
frequency of the nonoccluded system, �1, with the flow in a
centrally occluded system at two different frequencies,
namely, the resonance frequency of the nonoccluded system,
�1, and the resonance frequency of the centrally occluded
system, �2.

The flow comparison for a central obstruction is shown in
Fig. 5.

We can observe several points from Fig. 5: �1� The maxi-
mum value of the flow in a nonoccluded tube driven by a
time-dependent pressure gradient of the form of Eq. �21�
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FIG. 4. �Color online� Flow magnitude vs time in a 75% periph-
erally occluded tube and in a nonoccluded tube. The flow magni-
tude is plotted for three cases: normal conditions with �1, ob-
structed tube with �1, and the same peripherally occluded tube but
with �2 as described in the text. Flow is given in cm3/s and time is
given in s.
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FIG. 5. �Color online� Flow magnitude vs time in a 75% cen-
trally occluded system and in a nonoccluded system. Flow magni-
tude is plotted for three cases: normal conditions with �1, occluded
system with �1, and the same centrally occluded system but with �2

as described in the text. Flow is given in cm3/s and time is given
in s.
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with �0=�1 /2 is 0.3873 cm3/s. �2� The maximum value of
the flow in a centrally occluded tube driven by exactly the
same pressure gradient with �0=�1 /2 is 0.0012 cm3/s. This
means that the maximum value of the flow during a central
obstruction decreases by 99.7% for an occlusion of 75% of
the cross-sectional area. �3� When a pressure gradient of the
form of Eq. �21� with the new resonance frequency 2�0
=�2 is imposed, the maximum value of the flow increases to
0.1022 cm3/s. This implies a recovery of 26% of the flow.

For a dynamic of the Gaussian pulses, we obtained
that the maximum value of the flow in a nonoccluded tube
driven by a time-dependent pressure gradient with �1 is
0.1273 cm3/s; the maximum value of the flow in a centrally
occluded tube driven by exactly the same pressure gradient is
0.0002 cm3/s. This means that the maximum value of the
flow during a central obstruction decreases by 99.8% for an
occlusion of 75% of the cross-sectional area; when a pres-
sure gradient with the new resonance frequency �2 is im-
posed, the maximum value of the flow increases to
0.0258 cm3/s. This implies a recovery of 20% of the flow.

Once more, we notice two things: that for a rectified sine
signal the maximum value of the flow is larger in all cases,
and that when it comes to the percent of flow that can be
recovered, the dynamics does not make a dramatic differ-
ence, even though in this case the rectified sine signal gives
a better flow recovery �26%� compared to the 20% given by
a train of Gaussian pulses.

VII. DISCUSSION

According to our results, the overall effects of an obstruc-
tion are two. First, at low frequencies, the dynamic perme-
ability is much smaller when there is an occlusion than when
there is no occlusion. This can easily be understood because
of the decrease in flow space and it has been understood for
a very long time in the steady-state case. The second effect is
a nontrivial one: the peak structure of the dynamic perme-
ability is shifted toward the right-hand side, implying that the
range of frequencies at which the real part of the dynamic
permeability is large, happens at higher frequencies for oc-
cluded systems than for nonoccluded ones. We have also
found that for the same obstructed area, the resonance fre-
quency is much larger in a central occlusion than in a periph-
eral occlusion. This is due to the large friction that the fluid
experiences flowing between the walls of the tube and the
obstacle. Our results for the flow after an obstruction occurs,
indicate that flow decrease is larger for central occlusions
than for peripheral occlusions. This has been computed for
the same obstructed cross-sectional area.

It is important to realize that in both types of occlusions,
the value of the dynamic permeability at the resonance fre-
quency, is as large as the value of the dynamic permeability
at the resonance frequency of the nonoccluded case. For a
one-mode pressure signal, this implies that by applying a
pressure gradient containing the right frequency we can
reach the value that the dynamic permeability had before the
obstruction. Therefore, at the new frequency, the flow de-
crease due to the obstruction will then be given exclusively
by the decrease in cross-sectional area. See Eq. �16�.

For a general periodic pressure signal that contains many
modes, the flow depends on an infinite sum involving the
real and imaginary parts of the dynamic permeability at
an infinite number of modes. Therefore, applying a periodic
signal that contains the resonance frequency of the ob-
structed system, does not imply a full recovery of the flow;
first, because the cross-sectional area available for flow has
decreased and second, because the flow depends on the value
of the permeability at different frequencies. However, as can
be seen in Figs. 4 and 5, the flow can partially be recovered
by applying a periodic pressure gradient containing the right
frequency. The flow recovery is larger in the case of central
occlusions.

Fluid flow in man-made systems is normally driven at
either constant pressure gradient or constant flow. This
means that for man-made systems, we generally encounter
situations in which the fluid is moving in a steady state cor-
responding to zero frequency. On the contrary, on natural
systems, fluids are often flowing at a particular frequency.
For instance, in normal conditions blood is flowing in non-
occluded arteries at the frequency imposed by the heart.
Amazingly, this natural frequency is very close to the reso-
nance frequency of the system �2,3�. This suggests that blood
in nonoccluded arteries is flowing at a frequency that mini-
mizes the resistance to flow. Another interesting example is
the one of mucus in bronchia at a frequency of cough
�between 2 and 3 Hz for healthy individuals�. Again amaz-
ingly, it turns out that the resonance frequency of and ideal-
ized system with the Maxwell parameters for mucus in bron-
chia is very close to the natural frequency of coughing �9�.
What our results would suggest in this context is that, when
an occlusion occurs in a system with a natural frequency that
corresponds to the resonance frequency of the system, not
only the flow decreases due to the decrease in flow space, but
also because the resonance frequency of the occluded system
changes while the frequency of flow, that is, the natural fre-
quency of the system, remains unchanged. This would imply
that in occluded systems the fluid is no longer flowing with
the least possible resistance. The imposition of a pressure
gradient at the new resonance frequency, that is, the reso-
nance frequency of the occluded system, would cancel one of
the two factors that provoke the dramatic decrease of flow
during obstructions.

A word of caution is needed here since in many natural
systems flow is rectified through a system of valves that has
not been considered in the present work.

For both types of occlusions, we have considered that
cylinders are rigid. However, many man-made and natural
systems consist of flexible tubes. It has been shown �10� that
the peak structure of the dynamic permeability remains
qualitatively the same when longitudinal oscillations are con-
sidered. Important insight could be gained from the study of
the effect of transverse waves.

We have studied two dynamics of the imposed pressure
gradient and have obtained qualitatively similar results when
it comes to percentage of flow recovery. Nevertheless a pres-
sure gradient consisting of a rectified sine signal has given
systematically larger values for the maximum flow than a
pressure gradient consisting of a train of Gaussian pulses.
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This implies that in order to maximize the flow magnitude
for a particular system �fluid, confining media, and obstacle-
shape�, an optimization of the dynamics to be imposed
would be necessary.

We have shown that the application of a pressure gradient
with the correct frequency might help to partially recover the
flow in obstructed systems. The theory presented here, might
be useful to indicate which are the frequencies that would
have to be imposed in order to achieve that. For instance,
medical treatments based on the local imposition of certain
frequencies to the flow, might help to improve local circula-
tion.
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